Some cycle-supermagic labelings of the calendula graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H-supermagic labelings of graphs

A simple graph G admits an H-covering if every edge in E(G) belongs to a subgraph of G isomorphic to H. The graph G is H−magic if there exists a bijection f : V (G) [ E(G) ! {1, 2, 3, · · · , |V (G) [ E(G)|} such that for every subgraph H0 P of G isomorphic to H. G is said to be H − supermagic if f(V (G)) = {1, 2, 3, · · · , |V (G)|}. In thi...

متن کامل

On Harmonious Labelings of Some Cycle Related Graphs

A graph G(p, q) is said to be odd harmonious if there exists an injection f : V (G)→ {0, 1, 2, · · · , 2q − 1} such that the induced function f∗ : E(G) → {1, 3, · · · , 2q − 1} defined by f∗(uv) = f(u) + f(v) is a bijection. A graph that admits odd harmonious labeling is called odd harmonious graph. In this paper we prove that any two even cycles sharing a common vertex and a common edge are od...

متن کامل

Constructions of antimagic labelings for some families of regular graphs

In this paper we construct antimagic labelings of the regular complete multipartite graphs and we also extend the construction to some families of regular graphs.

متن کامل

Graceful labelings of the generalized Petersen graphs

A graceful labeling of a graph $G=(V,E)$ with $m$ edges is aninjection $f: V(G) rightarrow {0,1,ldots,m}$ such that the resulting edge labelsobtained by $|f(u)-f(v)|$ on every edge $uv$ are pairwise distinct. For natural numbers $n$ and $k$, where $n > 2k$, a generalized Petersengraph $P(n, k)$ is the graph whose vertex set is ${u_1, u_2, cdots, u_n} cup {v_1, v_2, cdots, v_n}$ and its edge set...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2018

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/948/1/012071